

User's Guide

NHD-12232WG-EYYH-V#A LCM

(Liquid Crystal Display Graphic Module) RoHS Compliant

NHD-	Newhaven Display
12232-	122 x 32 pixels

- **WG-** W = Factory Line G = Display Mode: Graphic
- **E-** Model/Serial Number
- Y- Yellow/Green LED B/L
- Y- STN- Yellow/Green
- **H-** Transflective, 6:00 View, Wide Temperature $(-20 \sim +70c)$
- V#- V : Built in negative Voltage #: RoHS Compliant
- A- Avant IC

-For product support, contact

Newhaven Display International, LLC 2511 Technology Drive, #101 Elgin, IL 60124 Tel: (847) 844-8795 Fax: (847) 844-8796

February 29, 2008

Contents

- 1. Module Classification Information
- 2.Precautions in use of LCD Modules
- **3.General Specification**
- 4. Absolute Maximum Ratings
- **5.**Electrical Characteristics
- **6.Optical Characteristics**
- 7.Interface Description
- 8.Contour Drawing & Block Diagram
- 9. Function Description
- 10.Commands Description
- **11.Timing Characteristics**
- 12.Relability
- 13.Backlight Information
- 14. Inspection specification
- 15. Material List of Components for RoHS

1.Module Classification Information

	<u>NHD 12232</u>	<u>W</u> <u>G</u>	- <u>EYYH</u> -]	V#A							
	0 2	3 4	5678)							
1	Brand : Newhaven D	isplay									
2	Display Font : 122 *	32 Dots									
3	Factory Line: W										
4	Display Type : H→C	naracter Typ	e, G→Graphic Type	e, C→ Color, X→Tab Type							
5	Model / Serial number: E										
6	Backlight Type :	N→Without	packlight								
	Backlight Type .	B→EL, Blue	green	A→LED, Amber							
		D→EL, Gree	n	$R \rightarrow LED$, Red							
		W→EL, Whi	te	O→LED, Orange							
		F→CCFL, W	hite	G→LED, Green							
		Y→LED, Yel	low Green	$T \rightarrow LED$, White							
0	LCD Mode :	B→TN Posit	ive, Gray	T→FSTN Negative							
	LCD WIDde .	N→TN Nega	tive,	C→STN Color							
		G→STN Pos	itive, Gray	M→STN Negative, Blue							
		Y →STN Pos	itive, Yellow Green	F→FSTN Positive							
0											
8	LCD Polarize Type/ Temperature range/			H→Transflective, W.T,6:00							
	View direction		e, N.T, 12:00	K→Transflective, W.T,12:00							
		G→Reflectiv		C→Transmissive, N.T,6:00							
			e, W. T, 12:00	F→Transmissive, N.T,12:00							
			tive, N.T,6:00	I→Transmissive, W. T, 6:00							
			tive, N.T.12:00	L→Transmissive, W.T,12:00							
9	Special Code		negative Voltage								
		A: Avant IC		1 17							
		# :Fit in wit	h the ROHS Directio	ns and regulations							

2.Precautions in use of LCD Modules

- (1)Avoid applying excessive shock to the module or making any alterations or modifications to it.
- (2)Don't make extra holes on the printed circuit board, modify its shape or change the components of LCD module.
- (3)Don't disassemble the LCM.
- (4)Don't operate it above the absolute maximum rating.
- (5)Don't drop, bend or twist LCM.
- (6)Soldering: only to the I/O terminals.
- (7)Storage: please store in anti-static electricity container and clean environment.

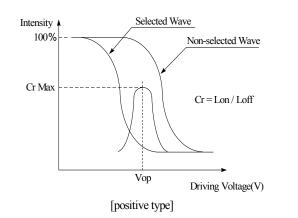
3.General Specification NHD-12232WG-EYYH-V#A

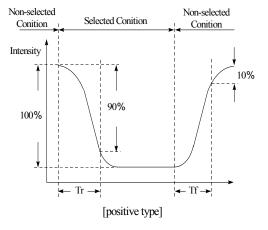
Item	Dimension	Unit
Number of Characters	122 x 32 dots	-
Module dimension	80.0 x 36.0 x 14.2MAX)	mm
View area	60.0 x 18.0	mm
Active area	53.64 x 15.64	mm
Dot size	0.4 x 0.45	mm
Dot pitch	0.44 x 0.49	mm
LCD type	STN, Positive, Transflective, Yellow Green	
Duty	1/32	
View direction	6 o'clock	
Backlight Type	LED, Yellow Green	

4.Absolute Maximum Ratings

Item	Symbol	Min	Тур	Max	Unit
Operating Temperature	T _{OP}	-20	-	+70	°C
Storage Temperature	T _{ST}	-30	-	+80	°C
Input Voltage	VI	0	-	V _{DD}	V
Supply Voltage For Logic	V _{DD}	0	-	6.7	V
Supply Voltage For LCD	V _{DD} -V _{LCD}	0	-	-10	V
Supply Voltage For LCD	V _{OUT}	-	NC		V

5.Electrical Characteristics


Item	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage For Logic	V_{DD} - V_{SS}	-	4.5	5.0	5.5	V
		Ta=-20°C	-	-	5.8	V
Supply Voltage For LCD	V_{DD} - V_0	Ta=25°C	-	4.5	-	V
		Ta=+70°C	3.9	-	-	V
Input High Volt.	V _{IH}	-	2.0	-	V _{DD}	V
Input Low Volt.	V _{IL}	-	0	-	0.8	V
Output High Volt.	V _{OH}	-	2.7	-	V _{DD}	V
Output Low Volt.	V _{OL}	-	0	-	0.4	V
Supply Current	I _{DD}	-	-	5.0	-	mA

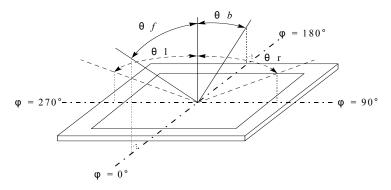

6.Optical Characteristics

Item	Symbol	Condition	Min	Тур	Max	Unit
View Angle	(V)θ	CR≧2	20	-	40	deg
View Angle	(H) φ	CR≧2	-30	-	30	deg
Contrast Ratio	CR	-	-	3	-	-
Descrete Time	T rise	-	-	100	150	ms
Response Time	T fall	-	-	100	150	ms

Definition of Operation Voltage (Vop)

Definition of Response Time (Tr, Tf)

Conditions :

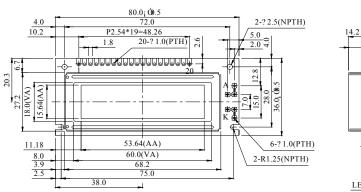

Operating Voltage : Vop

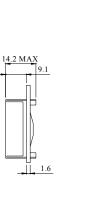
Viewing Angle(θ , ϕ): 0°, 0°

Frame Frequency : 64 HZ

Driving Waveform : 1/N duty , 1/a bias

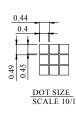
Definition of viewing angle(CR≧2)

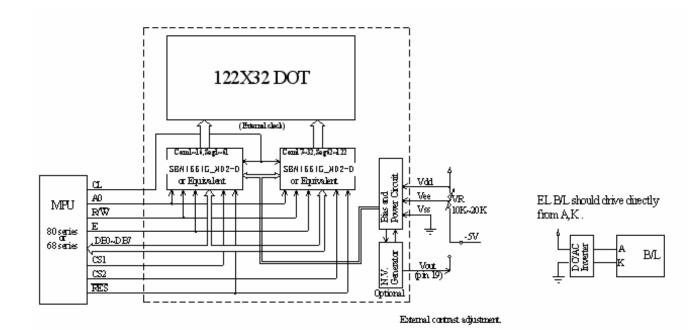



Page 6 of 33

7.Interface Description

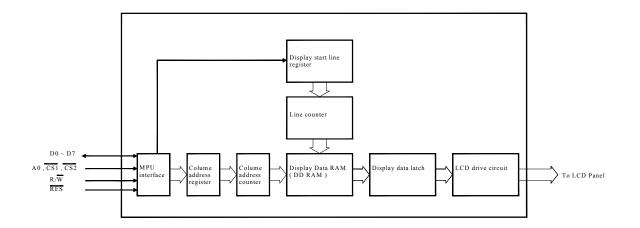
Pin No.	Symbol	Level	Description
1	V _{ss}	0 V	Ground
2	V _{dd}	5V	Power supply for logic
3	Vo	(Variable)	Operating voltage for LCD
4	A0	H/L	H : Data L : Instruction
5	CS1	H/L	Chip select signal for IC1
6	CS2	H/L	Chip select signal for IC2
7	CL	-	External clock 2KHz
8	E(/RD)	H/L	Enable Signal (/RD is for 80 series MPU read signal)
9	R/W(/WR)	H/L	H : Read ; L : Write(/WR is for 80 series MPU write signal)
10	DB0	H/L	Data bus line
11	DB1	H/L	Data bus line
12	DB2	H/L	Data bus line
13	DB3	H/L	Data bus line
14	DB4	H/L	Data bus line
15	DB5	H/L	Data bus line
16	DB6	H/L	Data bus line
17	DB7	H/L	Data bus line
18	RES	H/L	68-series MPU when H→L the LCM is reset.
			80- series MPU when L→H the LCM is reset.
			High level:68-series MPU interface
			Low level:80-series MPU interface
19	Α		Power supply for B/L(+)
20	К		Power supply for B/L(-)


8.Contour Drawing & Block Diagram



ED	B/L	

PIN NO.	SYMBOL
1	Vss
2	Vdd
3	Vo
4	A0
5	E1
6	E2
7	* (N.V)
8	NC
9	R/\overline{W}
10	DB0
11	DB1
12	DB2
13	DB3
14	DB4
15	DB5
16	DB6
17	DB7
18	RST
19	А
20	K



Page 8 of 33

9.Function Description

Block Diagram

This 122×32 dots LCD Module built in two SED 1520 LSI controller.

MPU interface

The SED 1520 controller transfers data via 8-bit bi-directional data buses (Do to D7), it can fit any MPU if it corresponds to SED 1520 Read and Write Timing Characteristics.

Data transfer

The SED1520 driver uses the A0, E and R/W signals to transfer data between the system MPU and internal registers, The combinations used are given in the table below.

A0	R/W	Function						
1	1	Read display data						
1	0	Write display data						
0	1	Read status						
0	0	Write to internal register (command)						

Busy flag

When the Busy flag is logical 1, the SED1520 series is executing its internal operations. Any command other than Status Read is rejected during this time. The Busy flag is output at pin D7 by the Status Read command. If an appropriate cycle time (t_{CYC}) is given, this flag needs not be checked at the beginning of each command and, therefore, the MPU processing capacity can greatly be enhanced.

Display Start Line and Line Count Registers

The contents of this register form a pointer to a line of data in display data RAM corresponding to the first line of the display (COM0), and are set by the Display Start Line command.

Column Address Counter

The column address counter is a 7-bit presentable counter that supplies the column address for MPU access to the display data RAM. See Figure 1. The counter is incremented by one every time the driver receives a Read or Write Display Data command. Addresses above 50H are invalid, and the counter will not increment past this value. The contents of the column address counter are set with the Set Column Address command.

Display Data RAM

The display data RAM stores the LCD display data, on a 1-bit per pixel basis. The relation-ship between display data, display address and the display is shown in Figure 1

Page Register

The page register is a 2-bit register that supplies the page address for MPU access to the display data RAM. See Figure 1. The contents of the page register are set by the Set Page Register command.

Figure 1. Display Data RAM Address

Page address		DATA]								Line address	Common output
		D0										00H	COM0
		Dl										01H	COM1
		D2										02H	COM2
D1,D2= 0,0		D3			\mathbb{N}		$\overline{)}$					03H	COM3
0,0		D4										04H	COM4
		D5										05H	COM5
		D6					/					06H	COM6
		D7										07H	COM7
		D0										08H	COM8
		Dl										09H	COM9
		D2										0AH	COM10
0,1		D3										OBH	COM11
		D4										0CH	COM12
		D5										0DH	COM13
		D6										0EH	COM14
		D7										OFH	COM15
		D0										10H	COM16
		Dl										11H	COM17
		D2										12H	COM18
1,0		D3										13H	COM19
		D4										14H	COM20
		D5										15H	COM21
		D6										16H	COM22
		D7										17H	COM23
		D0										18H	COM24
		Dl										19H	COM25
		D2										1AH	COM26
1,1		D3										1BH	COM27
7		D4										ICH	COM28
		D5										1DH	COM29
		D6										1EH	COM30
		D7		1								1FH	COM31
	Cold		D0=0	00H	01H	02H	03H	04H	05H	H90		4FH	. <u> </u>
	Coloum address	ADC	0 D0=1	-								+	
	addre	C		4FH	4EH	4DH	4CH	4BH	4AH	49H		HOO	
	SS		seg pin	-	2	3	4	5	6	7		80	
				-							SED1520		
				-							SED1521		

10.Commands Descriptions

Summary

~						Code						
Command	A0	RD	WR	D ₇	D ₆	D ₅	D_4	D ₃	D ₂	D ₁	D ₀	Function
Display ON/OFF	0	1	0	1	0	1	0	1	1	1	0/1	Turns display on or off.
1 5												1:ON, 0:OFF
Display start line	0	1	0	1	1	0	Dis	splay	start a	addre	SS	Specifies RAM line corresponding to top line of
1 2								(0) to 3	l)		display.
Set page address	0	1	0	1	1	0	1	1	0	Page ((0 to 3)	Sets display RAM page in page address register.
Set column	0	1	0	0		Colum	n addre	ss (0	to 79	`		Sets display RAM column address in column
(segment) address	Ŭ		Ŭ	0		Colum		33 (0	10 17	,		address register.
												Reads the following status:
												BUSY 1:Busy
												0:Ready
												ADC 1:CW output
Read status	0	0	1	Busy	ADC	ON/OFF	Reset	0	0	0	0	0:CCW output
												ON/OFF 1:Display off
												0: Display on
												RESET 1:Being reset
												0:Normal
Write display data	1	1	0			Wr	ite data					Writes data from data bus into display RAM.
Read display data	1	0	1			Rea	ad data	-				Reads data from display RAM into data bus.
Select ADC	0	1	0	1	0	1	0	0	0	0	0/1	0:CW output, 1:CCW output
Static drive ON/OFF	0	1	0	1	0	1	0	0	1	0	0/1	Selects static driving operation.
Static unve ON/OFT	0	1	0	1	0	1	0	0	1	0	0/1	1:Static drive, 0:Normal driving
Select duty	0	1	0	1	0	1	0	1	0	0	0/1	Selects LCD duty cycle
Select duty	0	1	0	1	0	1	0	1	0	0	0/1	1:1/32, 0:1/16
Read-Modify-Write	0	1	0	1	1	1	0	0	0	0	0	Read-modify-write ON
End	0	1	0	1	1	1	0	1	1	1	0	Read-modify-write OFF
Reset	0	1	0	1	1	1	0	0	0	1	0	Software reset

Table 1

Table 1 is the command table. The SED 1520 series identifies a data bus using a combination of A0 and R/W (RD or WR) signals. As the MPU translates a command in the internal timing only (independent from the external clock), its speed is very high. The busy check is usually not required.

A ₀	/RD	R/W /WR	D ₇	D ₆	D ₅	D_4	D ₃	D ₂	D_1	D ₀	
0	1	0	1	0	1	0	1	1	1	AEH D	, AFH

This command turns

the display on and off.

D=1: Display ON

D=0: Display OFF

Display Start Line

This command specifies the line address shown in Figure 1 and indicates the display line that corresponds to COM0. The display area begins at the specified line address and continues in the line address increment direction. This area having the number of lines of the specified display duty is displayed. If the line address is changed dynamically by this command, the vertical smooth scrolling and paging can be used.

	A_0	/RD	R/W /WR	D ₇	D ₆	D ₅	D_4	D ₃	D ₂	D_1	D ₀
C0H t	o BEF	ł 1	0	1	1	0	A_4	A ₃	A_2	A_1	A_0

This command loads display start line register.

A_4	A ₃	A_2	A_1	A_0	Line Address
0	0	0	0	0	0
0	0	0	0	1	1
		:			:
		:			:
1	1	1	1	1	31

See Figure 1.

Set Page Address

This command specifies the page address that corresponds to the low address of the display data RAM when it is accessed by the MPU. Any bit of the display data RAM can be accessed when its page address and column address are specified. The display status is not changed even when the page address is changed.

A_0	/RD	R/W /WR	D_7	D ₆	D ₅	D_4	D ₃	D ₂	D_1	D_0
0	1	0	1	0	1	1	1	0	A_1	A_0

B8H to BBH

This command loads the page address register.

A ₁	A_0	Page
0	0	0
0	1	1
1	0	2
1	1	3

See Figure 1

Set Column Address

This command specifies a column address of the display data RAM. When the display data RAM is accessed by the MPU continuously, the column address is incremented by 1 each time it is accessed from the set address. Therefore, the MPU can access to data continuously. The column address stops to be incremented at address 80, and the page address is not changed continuously.

00H to -	A ₀ 1eh	/RD	R/W /WR	D_7	D_6	D ₅	D_4	D ₃	D_2	D_1	D ₀
0011 10	0	1	0	0	A_6	A_5	A_4	A ₃	A_2	A_1	A_0

This command loads the column address register.

A ₆	A_5	A_4	A ₃	A_2	A_1	A_0	Column Address
0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1
			:				:
			:				:
1	0	0	1	1	1	1	79

Read Status

A_0	/RD	R/W /WR	D ₇	D_6	D ₅	D_4	D ₃	D_2	D_1	D ₀
0	0	1	BUSY	ADC	ON/OFF	RESET	0	0	0	0

Reading the command I/O register (A0=0) yields system status information.

The busy bit indicates whether the driver will accept a command or not.

Busy=1: The driver is currently executing a command or is resetting. No new command will be accepted.

Busy=0: The driver will accept a new command.

•The ADC bit indicates the way column addresses are assigned to segment drivers.

ADC=1: Normal. Column address $n \rightarrow$ segment driver n.

ADC=0: Inverted. Column address 79-u→segment driver u.

•The ON/OFF bit indicates the current status of the display.

It is the inverse of the polarity of the display ON/OFF command. ON/OFF=1: Display OFF ON/OFF=0: Display ON

The RESET bit indicates whether the driver is executing a hardware or software reset or if it is in

normal operating mode. RESET=1: Currently executing reset command. RESET=0: Normal operation

Write Display Data

A ₀	/RD	R/W /WR	D_7	D ₆	D ₅	D_4	D ₃	D ₂	D_1	D_0
1	1	0				Write	data			

Writes 8-bits of data into the display data RAM, at a location specified by the contents of the column address and page address registers and then increments the column address register by one.

Read Display Data

A_0	/RD	R/W /WR	D_7	D ₆	D ₅	D ₄	D ₃	D_2	D_1	D_0
1	0	1				Read	data			

Read 8-bits of data from the data I/O latch, updates the contents of the I/O latch with display data from the display data RAM location specified by the contents of the column address and page address registers and then increments the column address register.

After loading a new address into the column address register one dummy read is required before valid data is obtained.

Select ADC

АОН	A ₀ A1H	/RD	R/W /WR	D ₇	D_6	D ₅	D_4	D ₃	D ₂	D_1	D_0
	0	1	0	1	0	1	0	0	0	0	D

This command selects the relationship between display data RAM column addresses and segment drivers.

D=1: SEG0←column address 4FH,.....(inverted)

D=0: SEGO←column address 00H,.....(normal)

This command is provided to reduce restrictions on the placement of driver ICs and routing of traces during printed circuit board design. See Figure 1 for a table of segments and column addresses for the two values of D.

Static Drive ON/OFF

	A_0	/RD	R/W /WR	D ₇	D_6	D_5	D ₄	D ₃	D_2	D_1	D_0
A4H A	н ₀	1	0	1	0	1	0	0	1	0	D

Forces display on and

all common outputs to be selected.

D=1: Static drive on

D=0: Static drive off

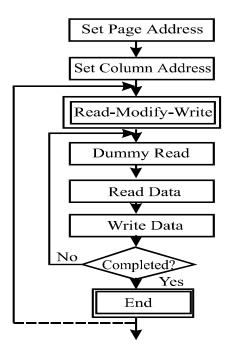
Select Duty

A8H A9	A_0	/RD	R/W /WR	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D_1	D ₀
AOIIA	0	1	0	1	0	1	0	1	0	0	D

This command sets the duty cycle of the LCD drive, Please set D=1, LCD duty cycle is 1/32 duty.

Read-Modify-Write

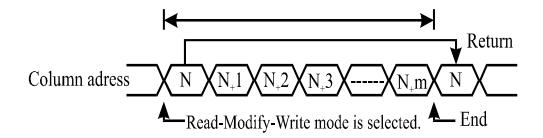
EOI	т
EUI	1


	A_0	/RD	R/W /WR	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0
H	0	1	0	1	1	1	0	0	0	0	0

This command defeats column address register auto-increment after data reads. The current contents of the column address register are saved. This mode remains active until an End command is received.

·Operation sequence during cursor display

When the End command is entered, the column address is returned to the one used during input of Read-Modify-Write command. This function can reduce the load of MPU when data change is repeated at a specific display area (such as cursor blinking).


* Any command other than Data Read or Write can be used in the Read-Modify-Write mode. However, the Column Address Set command cannot be used.

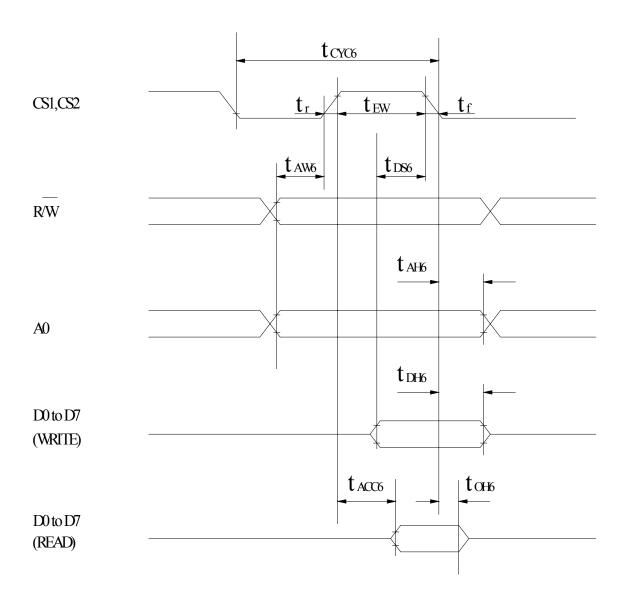
End

	A_0	/RD	R/W /WR	D_7	D ₆	D_5	D_4	D ₃	D_2	D_1	D_0
EEH	0	1	0	1	1	1	0	1	1	1	0

This command cancels read-modify-write mode and restores the contents of the column address register to their value prior to the receipt of the Read-Modify-Write command.

Re	set										
	A ₀	/RD	R/W /WR	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D_1	D_0
E2H	0	1	0	1	1	1	0	0	0	1	0

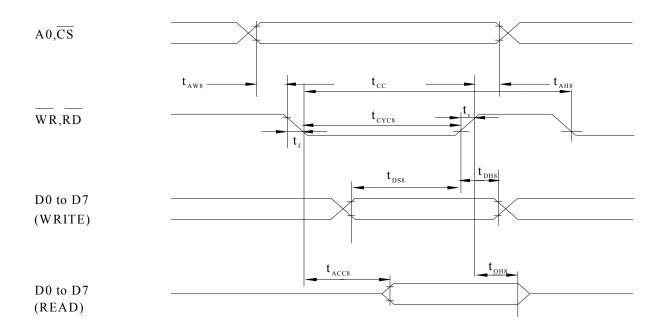
This command clears


- the display start line register.
- And set page address register to 3 page.

It does not affect the contents of the display data RAM.

When the power supply is turned on, a Reset signal is entered in the RES pin. The Reset command cannot be used instead of this Reset signal.

11.Timing Characteristics


MPU Bus Read/Write (68-family MPU)

Parameter		Symbol	Condition	Rating		Unit	Signal
		Symbol	Condition	Min.	Max.	Oint	Signai
System cyclo	e time	t _{CYC6}	-	1000	-	ns	
Address setup time		t _{AW6}	-	20	-	ns	A0,R/W
Address hol	d time	t _{AH6}	-	10	-	ns	
Data setup t	ime	t _{DS6}	-	80	-	ns	
Data hold ti	me	t _{DH6}	-	10	-	ns	D0 to D7
Output disa	ble time	t _{OH6}		10	60	ns	
Access time		t _{ACC6}	CL=100pF	-	90	ns	
Enable	Read	4	-	100	-	ns	CS
pulse width	Write	t _{EW}	-	80	-	ns	
Rise and fal	l time	tr, tf	-	-	15	ns	-

(V_{dd}=-2.7 to -4.5 V, Ta=-20 to +75°C)

Parameter	Symbol	Condition	Rating	-	Unit	Signal	
	Symbol	Condition	Min.	Max.	Oint	Signal	
System cycle time	t _{CYC6}	-	2000	-	ns		
Address setup time	t _{AW6}	-	40	-	ns	A0,R/W	
Address hold time	t _{AH6}	-	20	-	ns		
Data setup time	t _{DS6}	-	160	-	ns	D0 to D7	

Data hold time		t _{DH6}	-	20	-	ns	
Output disa	Output disable time			20	120	ns	
Access time		t _{ACC6}	CL=100pF	-	180	ns	
Enable	Read		-	200	-	ns	
pulse width	Write	t _{EW}	-	160	-	ns	CS
Rise and fal	l time	tr, tf	-	-	15	ns	-

MPU Bus Read/Write (80-family MPU)

Parameter	Symbol	Condition	Rating		Unit	Signal
	Symbol	Condition	Min.	Max.	Unit	Signal
Address hold time	t _{AH8}	-	10	-	ns	40 CS
Address setup time	t _{AW8}	-	20	-	ns	A0,CS
System cycle time	t _{CYC8}	-	1000	-	ns	WD DD
Control pulse width	t _{CC}	-	200	-	ns	WR,RD
Data setup time	t _{DS8}	-	80	-	ns	
Data hold time	t _{DH8}		10	60	ns	D0 to D7
RD access time	t _{ACC8}	C _{L=} 100 pF	-	90	ns	D0 10 D7
Output disable time	t _{CH8}	- 1	10	60	ns	
Rise and fall time	t _r ,t _f	-	-	15	ns	-

Ta=-20 to 75 deg. C, V_{dd} =5V±10 unless stated otherwise

(V_{dd}=-2.7 to -4.5 V, Ta=-20 to +75°C)

Parameter	Symbol	Condition	Rating	-	Unit	Signal	
	Symbol	Condition	Min.	Max.	OIIIt	Signar	
Address hold time	t _{AH8}	-	20	-	ns		
Address setup time	t _{AW8}	-	40	-	ns	A0,CS	
System cycle time	t _{CYC8}	-	2000	-	ns	W/D DD	
Control pulse width	t _{CC}	-	400	-	ns	WR,RD	
Data setup time	t _{DS8}	-	160	-	ns	D0 to D7	

Data hold time	t _{DH8}		20	-	ns	
RD access time	t _{ACC8}	C _{L=} 100 pF	-	180	ns	
Output disable time			20	120	ns	
Rise and fall time	t _r , t _f	-	-	15	ns	-

12.Reliability

Content of Reliability Test (wide temperature, -20°C~70°C)

	Environmental Test		
Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage temperature for a long time.	80°C	2
storage		200hrs	
Low Temperature storage	Endurance test applying the high storage temperature for a long time.	-30°C	1,2
		200hrs	
High Temperature Operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a	70°C	
- Person	long time.	200hrs	
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	-20°C	1
operation		200hrs	
High Temperature/ Humidity Operation	The module should be allowed to stand at 60 °C,90%RH max For 96hrs under no-load condition excluding the polarizer, Then taking it out and drying it at normal temperature.	60°C,90%RH 96hrs	1,2
Thermal shock resistance	The sample should be allowed stand the following 10 cycles of operation -20°C 25°C 70°C 30min 5min 30min 1 cycle	-20°C/70°C 10 cycles	
Vibration test	Endurance test applying the vibration during transportation and using.	Total fixed amplitude : 1.5mm Vibration Frequency : 10~55Hz One cycle 60 seconds to 3 directions of X,Y,Z for Each 15 minutes	3
Static electricity test	Endurance test applying the electric stress to the terminal.	VS=800V,RS=1.5kΩ CS=100pF 1 time	

Note1: No dew condensation to be observed.

Note2: The function test shall be conducted after 4 hours storage at the normal

Temperature and humidity after remove from the test chamber.

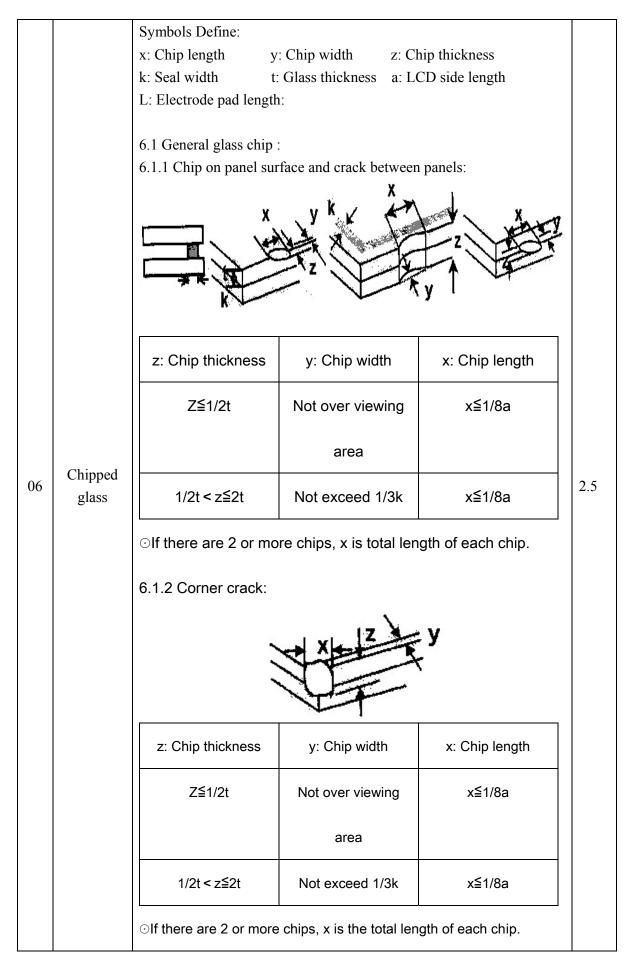
Note3: Vibration test will be conducted to the product itself without putting it in a container.

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	TEST CONDITION
Supply Current	ILED	96	120	180	mA	V=4.2V
Supply Voltage	V	4.0	4.2	4.4	V	-
Reverse Voltage	VR	-	-	8	V	-
Luminous Intensity	IV	60	-	-	CD/M ²	ILED=120mA
Wave Length	λp	-	571	-	nm	ILED=120mA
Life Time	-	-	100,000	-	Hr.	ILED=120mA
Color	Yellow Gro	een		1	1	1

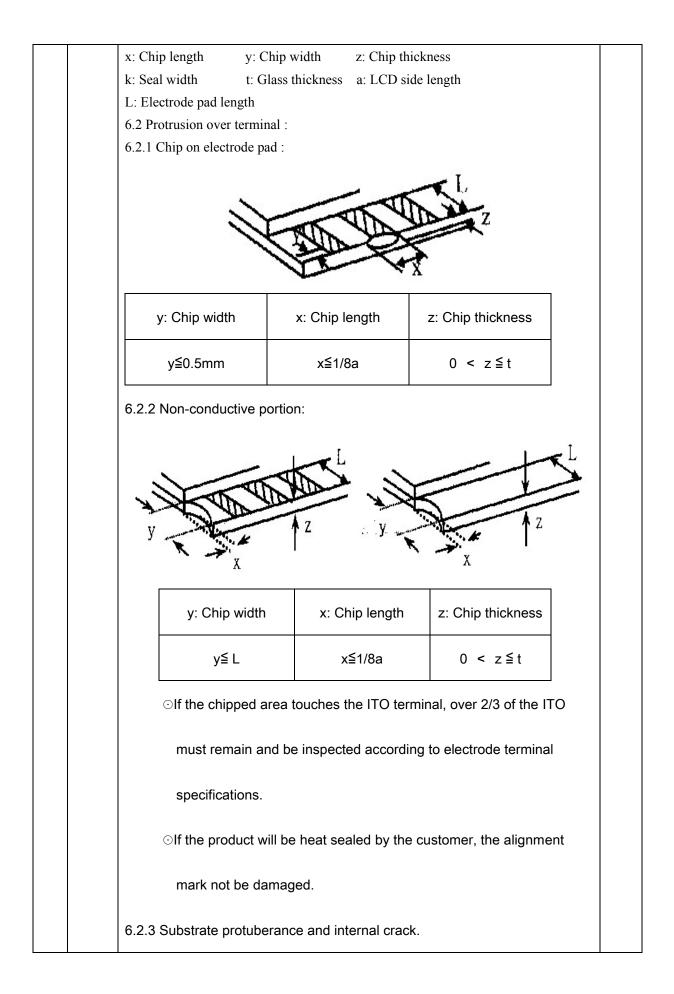
13.Backlight Information

The LED of B/L is drive by current only, drive voltage is for reference only.

drive voltage can make driving current under safety area (current between minimum and maximum).


Ν

14. Inspection specification


NO	Item		Criterion		AQL
01	Electrical Testing	 1.1 Missing vertical, horizont 1.2 Missing character, dot or 1.3 Display malfunction. 1.4 No function or no display 1.5 Current consumption exce 1.6 LCD viewing angle defec 1.7 Mixed product types. 1.8 Contrast defect. 	icon. eeds product speci		0.65
02	Black or white spots on LCD (display only)	2.1 White and black spots on three white or black spots2.2 Densely spaced: No more	present.		2.5
03	LCD black spots, white spots, contamination (non-display)	3.1 Round type : As following $\Phi = (x + y) / 2$ $\downarrow \qquad \qquad$	g drawing SIZE Φ≦0.10 0.10 < Φ≦0.20 0.20 < Φ≦0.25 0.25 < Φ	Acceptable Q TY Accept no dense 2 1 0	2.5
		3.2 Line type : (As following	drawing)		2.5

			Length	Width	Acceptable Q TY	
				W≦0.02	Accept no dense	
			L ≦3.0	0.02 < W≦0.03	2	
			L ≦2.5	0.03 < W≦0.05	2	
				0.05 < W	As round type	
		If bubbles are vis judge using black		Size Φ	Acceptable Q TY	
		specifications, no to find, must che	ot easy	Ф≦0.20	Accept no dense	
04	Polarizer bubbles	specify direction		0.20 < Φ≦0.50	3	2.5
				0.50 < Φ≦1.00	2	
				1.00 < Φ	0	
				Total Q TY	3	

NO	Item	Criterion	AQL
05	Scratches	Follow NO.3 LCD black spots, white spots, contamination	

NO	Item	Criterion	AQL
06	Glass crack	Symbols :	2.5

	y: width	x: length	
y y	y≦1/3L	x≦a	

		AQL
Cracked glass	The LCD with extensive crack is not acceptable.	2.5
Backlight elements	 8.1 Illumination source flickers when lit. 8.2 Spots or scratched that appear when lit must be judged. Using LCD spot, lines and contamination standards. 8.3 Backlight doesn't light or color wrong. 	0.65 2.5 0.65
Bezel	9.1 Bezel may not have rust, be deformed or have fingerprints,stains or other contamination.9.2 Bezel must comply with job specifications.	2.5 0.65
РСВ、СОВ	 10.1 COB seal may not have pinholes larger than 0.2mm or contamination. 10.2 COB seal surface may not have pinholes through to the IC. 10.3 The height of the COB should not exceed the height indicated in the assembly diagram. 10.4 There may not be more than 2mm of sealant outside the seal 	2.5 2.5 0.65 2.5 2.5 0.65
1		10.3 The height of the COB should not exceed the height indicated in the assembly diagram.

		10.5 No oxidation or contamination PCB terminals.	
		10.6 Parts on PCB must be the same as on the production	
		characteristic chart. There should be no wrong parts, missing	0.65
		parts or excess parts.	
		10.7 The jumper on the PCB should conform to the product	2.5
		characteristic chart.	
		10.8 If solder gets on bezel tab pads, LED pad, zebra pad or screw	2.5
		hold pad, make sure it is smoothed down.	
		10.9 The Scraping testing standard for Copper Coating of PCB	
		X	
		\mathbf{Y} X * Y<=2mm ²	
		11.1 No up molted colder pasts may be present on the DCP	
		11.1 No un-melted solder paste may be present on the PCB.	2.5
		11.2 No cold solder joints, missing solder connections,	2.5
11	Soldering	oxidation or icicle.	2.5
11	Soldering		0.65
		11.3 No residue or solder balls on PCB.	
		11.4 No short circuits in components on PCB.	

NO	Item	Criterion	AQL
			2.5
		12.1 No oxidation, contamination, curves or, bends on interface	0.65
		Pin (OLB) of TCP.	2.5
		12.2 No ercelle en interface nin (OLP) of TCD	2.5 2.5
12		12.2 No cracks on interface pin (OLB) of TCP.	2.5
	appearance	12.3 No contamination, solder residue or solder balls on product.	2.5
		12.4 The IC on the TCP may not be damaged, circuits.	2.5
			0.65 0.65
		12.5 The uppermost edge of the protective strip on the interface	0.65
		pin must be present or look as if it causes the interface pin to	0.65

sever.	
12.6 The residual rosin or tin oil of soldering (component or chip	
component) is not burned into brown or black color.	
12.7 Sealant on top of the ITO circuit has not hardened.	
12.8 Pin type must match type in specification sheet.	
12.9 LCD pin loose or missing pins.	
12.10 Product packaging must the same as specified on	
packaging specification sheet.	
12.11 Product dimension and structure must conform to product	
specification sheet.	

15. Material List of Components for RoHs

1. Newhaven Display declares that all of or part of the products (with the markings "#" in its code), including, but not limited to, the LCM, accessories or packages, manufactured and/or delivered to your company (including your subsidiaries and affiliated company) directly or indirectly by our company (including our subsidiaries or affiliated companies) do not intentionally contain any of the substances listed in all applicable EU directives and regulations, including the following substances.

Exhibit A: Harmful Material List

.

Material	(Cd)	(Pb)	(Hg)	(Cr6+)	PBBs	PBDEs
Limited Value	100 ppm	1000 ppm	1000 ppm	1000 ppm	1000 ppm	1000 ppm
Above limited value is set up according to RoHS.						

2.Process for RoHS requirement :

(1) Use the Sn/Ag/Cu soldering surface ; the surface of Pb-free solder is rougher than we used before.

(2) Heat-resistance temp. :

Reflow: 250, 30 seconds Max.;

Connector soldering wave or hand soldering : 320 , 10 seconds max.

(3) Temp. curve of reflow, max. Temp. : 235 ± 5 ;

Recommended customer's soldering temp. of connector : 280 , 3 seconds.